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The linear problem of convective mass and heat transfer of droplets for commensurate 
phase resistances was investigated in [1-8] for large Peclet numbers. It was considered in 
[1-7] that a thin diffusion boundary layer exists on both sides of the phase separation; the 
problem was considered in a stationary formulation in [i, 2, 5]. The solutions obtained in 
[3, 4, 6, 7] emerged from the stationary regime corresponding to a certain inhomogeneous con- 
centration distribution in the boundary layers which determine a mean Sherwood number different 
from zero and proportional to Pd~e. The complete problem of the mass transfer of drops for 
commensurate phase resistances was modeled in [8] by the transport equation within the drop 
with a boundary condition on the surface that reflects the nature of the mass transfer in the 
continuous phase. 

It is shown in this paper that the results of [3, 4, 6, 7] are firstly applicable only 
in the initial fast-flowing stage of the process (to the start 6f interaction between the 
internal diffusion boundary layer and the diffusion wake it generates) and are inapplicable 
to the intermediate and concluding stages of the process, and secondly, the results of the 
modeling [8] are reflected poorly in the dynamics of the mass and heat transfer process 
within the droplet in the initial and intermediate stages of the process but better in the 
concluding stage. 

I. FORMULATION OF THE PROBLEM 

Let us consider nonstationary convective mass and heat transfer between droplets and a 
continuous medium in the case of commensurate phase resistances. Let us consider the phase 
equilibrium condition in the form 

c~ = ~F (C~) (F (0) = 0, Ko f> 0, ~ / >  0), (I.!') 

satisfied on a droplet surface, where CI and C2 are the concentrations in the continuous and 
disperse phases, and ~ = aF(CI)C71 is the distribution coefficient [8]. It is ordinarily con- 

sidered that the function F depends linearly on the concentration F(C~) = CI [1-7]. It was 
shown in [8, 9] that a power,law dependence F(CI) = C~ should be used in a number of cases, 
where n ~ 0.6, for instance [9]. The most general case of an arbitrary dependence F = F(CI) 
in (i.!') will be examined below. 

The appropriate boundary value problem has the following form in dimensionless variablesz 

Oci/Ot + ( v i v ) c i  = ( x i / P e ) A c i ,  i ---- t ,  2,  •  = x ,  x 2 = t ;  

t = 0, c l  = 1, c~ = 0 ;  r - +  co ,  c x - +  t ;  

r = 1, c2 ----/(Cl), • = Oc2/Or, 

c I = I + C .  1 (C 1 - -  Clo), c2 = C .  1 ( C ~ - -  C1), " P e  a U D ~  x, t = a-lUt ' ,~ 

• = D 1 D ;  I, J (cl) - - -  C2oC-~ 1 + a C : I F  (C.  (c 1 ~ t )  + Clo),  - 

(1.1) 

(1.2) 

(1.3) 

where CIo and C2o are the initial concentrations outside and inside the droplet, D i are diffu- 

sion coefficients, Pe is the Peclet number, a is the droplet radius, U is the characteristic 
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stream velocity, C, is the characteristic concentration which is selected from considerations 

of convenience (in the linear case F(CI) = Cz it is convenient to set C, = C~o -- ~-ZCzo, then 

the first boundary condition (1.3) takes the form r = i, c2 = ~ci), t' is the dimensional 

time. When writing the equations and the initial and boundary conditions (1.1)-(1.3), the 

quantities a and aU -I were selected as the characteristic length and time scales. 

For definiteness we consider the fluid velocity distributions v. outside and inside the 
1 

droplet to correspond to the Hadamard--Rybchinskii solution 

4(1) = ( i / 4 ) ( 1  - -  r ) [ 2 ( ~ - ] -  t ) r  - -  ~ - -  ~r  -11 s i n  s O, r / >  i~ ( 1 . 4 )  

~(2) = (t/4)r~(I _ r 2) sin s O, 0 ~< r ~< 1, 

Vr - -  r 2s inO O0 ' 

r sinO Or " 

For  c o n v e n i e n c e ,  t he  q u a n t i t y  U = U (B + l )  - ~ ,  where U i s  t he  s t r e a m  v e l o c i t y  a t  i n -  

f i n i t y  and B i s  the  r a t i o  o f  the  d r o p l e t  v i s c o s i t y  to  the  s u r r o u n d i n g  f l u i d  v i s c o s i t y ,  was 
t aken  as t he  c h a r a c t e r i s t i c  s t r e a m  v e l o c i t y  i n  w r i t i n g  ( 1 . 1 ) - ( 1 . 4 ) ;  t h e  a n g l e  0 i s  measured  
from the flow direction at infinity (see Fig. i). 

It should be noted that the limit cases of limiting resistance of the outer or inner 
phases correspond to passages to the limit in (1.1')-(1.4) as a § = and ~ § 0. Furthermore, 
the most important case of commensurate phase resistances will be chosen, for example, that 
which occurs in the corresponding thermal problem where the equalities a = i, F(C:) = C~ are 
always satisfied in (i.i') (here CI and C2 are the temperature outside and inside the drop). 

An asymptotic analysis of the problem (1.1)-(1.4) for large Peclet numbers (Pe >> i) 
(it is considered that f(cz) = 0(i) for c~ = O(I)) shows that the flow core el, the diffusion 

boundary domain layer domain di, and the diffusion wake domain Wi, i = i, 2 (see sketch) can 

be extracted in the whole flow domain outside and inside the drop. 

2. INITIAL STAGE OF THE PROCESS 

For t << 1 the convective term in (i.i) can be neglected, and the solution will here 
correspond to a thin "shock" spherical layer outside and inside the droplet near its sur- 
face (which is a result of the mismatch between the initial and boundary conditions (1.2) and 

(1.3) for f(1) # 0). 

f//L  l i ! f ; \ \  

Fig. 1 
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For t = ~(i) the convective terms in (i.i) will be of the same order as the nonstationary 
terms; hence the concentration in the stream cores remains equal to the initial concentrations 

(e)  " 
c! e) = I and c~ = 0, while diffusion boundary layers d~ = {]r--l]~O(Pe-V~), O(Pe-I/~)~0, 

O(Pe-~/~)~n -- O} are formed near the droplet surface (here and henceforth, the inequalities 

in the braces indicate the orders of the characteristic dimensions of the domainunder consid- 
eration), which still behave qualitatively identically on different sides of the droplet 
surface. The introduction of a new "stretched" boundary layer coordinate Y in the equation, 
initial andboundary conditions (1.1)-(1.4) with subsequent extraction of the higher terms of 

the expansion in the small parameter Pe -~/~ results in the following boundary value problem 

_ 0 2 - -  0 t ( i  2 0 ( 2 . 1 )  acld)at A(0"c~d)' A ( 0 - -  • YgO!/ 2 --~)~-~-9~: i----i, 2; 

( 2 . 2 )  
t = 0 ,  c(~d)=i, c(2d)=0; r - + - - o o ,  c(~d)-+i; Y - + +  oo, c(2d)-+0; 

0c(1 d) __ 0c(2 d) (2.3) 
= I ( . 1 %  ' Y  ~ 0 ,  c2 OY OY ' 

Y = Pel/2(l -- r), ~ = cos 0 (• = • • = t).  

We seek the solution of (2.1)-(2.3) in the form 

c ~ ) =  c~ d)(~, ~, (o)= A i + B i e r f /  I~' 1 2• 1/2 [~ (9) -- ~ (S (O)i]1/2j, (2.4) ! 

pel/= 

(o---- t - -  In ~-t-~ S((o) th  ~) l - -  ~' ------ --f-" 

It can be shown that (2.4) is the solution of (2.1) for any constants A.~ and Bi, whose 

explicit form is obtained by substituting (2.4) in the initial and boundary conditions (2.2) 
and (2.3). We consequently have 

A :  = i -- ~ •  B :  = )~• A 2 = %, B 2 = --%; 

=/(i -- ~• 

(2.5) 

(2.6) 

Here the parameter % is determined by solving the (transcendental) equation (2.6). In 
the linear case f(c) = c formulas (2.4)-(2.6) go over into formulas from [4, 6]. 

It can be shown that the expressions (2.4)become unsuitable in the neighborhood of the 
outflow point 8 = 0 (~ = i), where the formation of the inner and outer diffusion wakes W i 
occurs. In the outer wake W~ the substance depleted because of diffusion is entrained by 
the stream from the droplet surface to infinity, and exerts no reverse influence on the outer 
diffusion boundary layer that generates it. An essentially more complex situation holds with- 
in the droplet. For t = 0 the concentration distribution within the droplet is homogeneous 
and the diffusion wake W2 is missing; for t > 0 the diffusion wake starts to be formed and 
by gradually "progressing" along the stream axis, "penetrates" through the whole volume of 
the droplet, after which it starts to interact with the internal diffusion boundary layer d2 
by exerting a reverse influence on it. 

The diffusion wake W2 is substantially inhomogeneous and consists of the domain of the 

rear critical point W ~ ) = { i - - r ~ O ( P e - 1 / 2 ) ,  O~O(Pe-1/2)}, the convective boundary layer domain 

of the wake W~ I) = {O (Pc, I/2) ~ i-- r, O (Pc-l) ~ ~(2)~ O (Pc-i/2)}, the internal domain of the wake 

I~ 2) = {O (Pe -I/2)~I --r, O~!~)~O (pc-l)} , and the domain of the leading stagnation point 

b = {i -- r ~OiPeX1/2), g-- G~O(Pe-~2)} (see Fig. i). The procedure to obtain the equations 

and boundary conditions for the concentration distribution in the domains mentioned is 
completely analogous [I0, ii]. The main transfer of substance coming in from the boundary 
layer occurs in the convective-boundary layer domain o~ the diffusion wake W(~), in which 

2 the concentration distribution is defined by the equation 
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Oc~ ~) Oc (~) o~(#~ ~ ( i  - z -~) ~ 
Ot 2 Oz 2 z q - ~ -  ---- O, ~=Pe~/~p ,  ( 2 . 7 )  

where z = r cos e, p = r sin e is a cylindrical coordinate system related to the center of 
the droplet, and q is the "stretched" coordinate. Equation (2.7) is obtained by inserting 
the new variables z and q in (i.I) gnd subsequently extracting the higher terms of the ex- 
pansion in the small parameter Pe -~/2 (as always, in this procedure it is considered that 
n = 0(i), ~/3n = O(i), 3~l~n ~= 0(i)). 

The general solution of (2.7) has the form 

- = : T q  ( t - - z  2), c0 ( t ) - - - t+my-~_z ,  ( 2 . 8 )  

(~) 
w h e r e  ~ i s  an  a r b i t r a r y  f u n c t i o n  o f  b o t h  a r g u m e n t s  ~ and m . 

The condition for asymptotic merging of the solution in the diffusion boundary layer do- 
main (2.4)-(2.6) and the convective boundary layer domain of the diffusion wake (2.8) is writ- 
ten in the form 

and governs the explicit form of the function ~, and therefore, the concentration distribution 
in the domain W(~ ) as well 

c$1)=c~)(~,i,mO)- i]npe+ ]n ~ -- ~ In 2). (2.9) 

Execution of the merger procedure in this case is most simpleto comprehend if one continues 
through coordinate s, measured along the streamline in the flow where the origin of measuring 
the coordinate s is from the middle of the droplet section e = ~/2 and s is the distance from 
the surface e = 7/2 along the streamline ~(a) = const, is introduced in place of the two local 

coordinates ~ (in the domain d2) and z (in the domain W(~)). It can be seen that the local 
coordinate is expressed in the diffusion boundary layer d2 in terms of the continuous coordi- 

nate as follows; ~ = sin s (0~s~<~/2) while in the convective boundary layer domain W(~ ) the 

relationshipz = ~/2q-l--s (~/2~s~/2q-2)is valid. Furthermore, let us note that the 

local variables m and m(1) are characteristics of the shortened equations (2.1) and (2.7) for 

3/3Y = 32/~y2 = 3/~q = 0. Taking into account the equality (vV)c= = Vs$C2/3s, it is easy to 

verify that one continuous cyclic variable 
8 

I " ds (2 i0) = t -  ~ ,  v~=lvl, 
8 

0 

can  be  i n t r o d u c e d  i n  p l a c e  o f  t h e  l o c a l  v a r i a b l e s  ~ and ~(~)  c o r r e s p o n d i n g  t o  t h e  l o c a l  c o o r d i -  
n a t e s  ~ and z by using which the solutions in the diffusion boundary layer and the convective- 
boundary layer domain of the wake within the droplet can be written in the form 

c~ a) = e~ ) (~, g, ~ ) ,  c~ ) = ~ (~, ~). ( 2 . 1 1 )  

Merging the expressions (2.11) already offers no difficulties (in contrast to_(2.4) and 
(2.8)) and is performed in an elementary manner. Here the direct calculations of ~ in the 

domain W(~ ) with the subsequent passage from the continuous coordinate s to the local coordi- 
nate z results in (2.9). The presence of logarithmic terms in the representation (2.9) is due 
to the singularity in the integrand (2.10) in the neighborhood of the outflow point where the 
fluid velocity v is close to zero and essentially inhomogeneous in @2. 

S 

Equation (2.7) corresponds to purely convective substance transfer without change along 

the streamlines. The concentration profile in W (I) 2 is determined by the concentration distri- 
bution at the "exit" from the diffusion boundary layer d2. It is seen from (2.9) that a 
substantial retardation with the characteristic time In Pe/2 occurs in the convective boundary 
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layer diffusion wake W(~ ) (as always, it is considered that ~ = 0(I) in W(~)), and this re- 

tardation is different at different streamlines ~ = const. Such dispersion of the retarda- 
tion time is due to the inhomogeneity of the fluid velocity distribution near the outflow 
stagnation point e = 0, where as follows from (2.9), there is practically no substance trans- 
port near the stream axis (~ << I), and the retardation is quite large. As the distance in- 
creases from the stream axis, the fluid velocity in the neighborhood of the outflow point in- 
creases and the retardation diminishes. 

For the diffusion wake to be formed completely (i.e., "penetrate" throughout the whole 
droplet volume) and interaction to start with the diffusion boundary layer d2, the continuous 
coordinates s "advancing" along the fixed streamline near the stream axis and "passing" the 
neighborhood of the forward stagnation point (0 = 7) should be incident in the domain d2. 
Here because of the complete identity of the singularities of the fluid velocity field in the 
neighborhood of the forward (e ~ 7) and rear (8 ~ 0) stagnation points, the retardation time 

should be doubled. 

It follows from the analysis performed that the domain of applicability of the solutions 
(2.4)-(2.6) is limited to the range 0~ t < t,, where t, is the characteristic retardation 
time 

t ,  = 0 (ln Pe). (2 .12)  

The characteristic retardation time t, has a simple physical meaning, namely: Define t, 

by the formula 

t ,  = j (~(2)) = ~ de 
-~-s' (2 .13)  

corresponding to the time during which a fluid element within the droplet will perform a com- 
plete rotation along the closed line 4 (2) = const passing through the diffusion boundary layer 

i) i.e in the domain d2 and the convective-boundary layer domain of the diffusion wake W( 2 , ., 
limit for 

Pe-+  co, ~(~)= Pe-~/~, ~ = 0(1). (2 .14)  

As a r e s u l t  of  the  e x p a n s i o n  of  j ( ~ ( 2 ) )  we o b t a i n  (2 .12)  from (2.13)  and ( 2 . 1 4 ) .  

The results obtained can be interpreted as follows. Since the fluid flow velocity with- 
in the droplet is finite, then at the beginning, for short times t < t, there is a homogeneous 
concentration arriving from the fluid depths, in the domain of the forward stagnation point b2. 
This occurs until the enriched solution incident from the "end" of the boundary layer d2 into 
the diffusion wake W2 (because of influx of substance from outside through the droplet surface), 
and traversing the whole path near the stream axis reaches the "beginning" of the diffusion 
boundary layer. The characteristic time of substance transfer in the droplet diffusion layer 
determines the domain of applicability of the solutions (2.4)-(2.6), which for t > t, ceases 
to describe correctly the concentration distribution in the diffusion wake (because of the 
change in the inleakage conditions). 

Formula (2.12) permits making the followingremark relative to the qualitative behavior 
of the fundamental mass transfer characteristics outside and inside the droplet. For very 
large Peclet numbers such that in Pe > 0(i), we have t, > 0(i) from (2.12). The characteristic 
relaxation time t of the diffusion boundary layer solution (2.4)-(2.6) is t = 0(i) and is 

P P 
less than the characteristic retardation time t < t,. This latter means that for very large 

P 
Peclet number the diffusion boundary layers on different sides of the droplet surface will 
succeed in being built up earlier than the interaction starts between the internal boundary 
layer and the inner diffusion wake it generated (i.e., the stationary solution ~-(~) = limc~ d) 

(~,~ ~(t,~)) can be considered as an intermediate asymptotic of the solution of the general non- 

stationary problem in the domain d.). This circumstance adduces a certain meaning to the 
i 

stationary solutions [!, 2, 5]. It follows from the above that the time dependence of the 
~nean diffusion flow on the droplet surface should have a characteristic flat section corre- 
sponding to the intermediate '~stationary" regime. 
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In the intermediate stage of the mass and heat transfer process for O(in Pc)-< t < O(Pe) 

the diffusion boundary layer equations (2.1) still remain valid; however, the solution here 
is already not self-similar, in contrast to (2.4)-(2.6), since the mutual influence of the 
diffusion wake W2 and the boundary layer d2 within the drop must be taken into account. As a 
result of the interaction, the internal diffusion wake strongly "blurs" the diffusion boundary 
layer d2 (here the boundary layers outside and inside the droplets already start to differ 
substantially). This gradually results in a significant increase in the thickness of the 
inner boundary layer with time so that the linear approximation of the stream function near 
the droplet surface, and therefore (2.1) also, becomes unsuitable for a correct description 
of the process. 

Furthermore, the intermediate time interval is not considered but the asymptotic of the 
solution of the problem (1.1)-(1.3) will be investigated in the concluding stage of process 
development for t ~O(Pe). 

3. CORRESPONDENCE BETWEEN ASYMPTOTIC EXPANSIONS OF THE SPECIMEN 
AND THE ORIGINAL 

Many qualitative and quantitative features of the asymptotic behavior of nonstationary 
problems with a small or large parameter can be clarified by application of a Laplace-Carlson 
transformation because of the following useful remark. 

Let there be an (arbitrary) function x = x(t, s), dependent on the time and a small 
(large) parameter ~ (to simplify the writing the dependence of the function x on the space 
coordinates is omitted), which in the limit 

e - +  O, �9 = 5(e)t  = 0 ( t )  (3.!) 

is expanded in an asymptotic series in the parameter r (T is fixed) 

e~O, x - -  ~ ( e )  xn(T), l i m a n + l = O .  (3.2) 
n=O ~ 0  ~ n  

The variable T corresponds to a "fast" or "slow" time depending on the choice of the 
kind of function ~(e) (the dependence 6(E) = ek is encountered most often). Expansions of 
the type (3.2) can naturally be constructed as desired by selecting 6(~) differently. In 
specific cases when the function x = x(t, ~) is a solution of a certain boundary value prob- 
lem, the selection of the dependence 6 = ~(e) raises no difficulties as a rule. 

Let us set in correspondence with the function x(t, ~) the transition x(p, ~) obtained 
by a Laplace-Carlson transformation 

x = x ( p ,  ~) = L .  x ,  
0 

In the transform space~ the series 

e-+O, x - -  ~an(e);~-n(q), 
"n=o 

oo 

L,x = p S e-Vtx (t, e) dr. 

p 
q = ~ ~j'8 ~ 

(3.3) 

(3.4) 

corresponds formally to the series (3.2) because of the properties of the operator L. 

Let us note that the asymptotic expansion of the function x = x(p, E) (3.3) as ~ + 0 

and p = 6(e)q, lqI = 0 (i) for a given asymptotic sequence an(E) is unique [13], and therefore 
agrees with (3.4)., Taking account of the remark made and the relationship (3.1), it follows 
from the comparison of the s~ries (3.2) and (3.4) that the asymptotic expansion of the func- 
tion ~ in a series in the transform space as c § 0 and IPl = 0(6), ~ = 6(s) corresponds to 
the expansion of the original x as c § 0 and t = 0(1/6), and conversely. The mentioned prop- 

erties of the asymptotic expansions permit elementary transferral of the resultsobtained 
in the transform space over to the original (certain general assertions relative to the 
correspondence of the convergence of the series (3.2) and (3.4) can be obtained by a simple 
reformulation of the theorem presented in [14]). In application to convective heat and mass 
transfer problems the above means that "compression" ("extension") of the complex parameter p 
in the transform space corresponds to "extension" ("compression") of the time t in the space 
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of the originals; here the correspondence t = O(Peh) ++ IPl = O(Pc-k) is satisfied (the simplest 

case of a power-law dependence of 3 on Pe is presented here). 

4. CONCLUDING STAGE OF THE PROCESS 

The problem (1.1)-(1.4) takes the following form after a Laplace-Carlson transformation 
with respect to time 

p(u~  - -  I) q- (vlv)u~ = •  (t < r); 

p u  2 q-  (v2v)u ~ ---- Pe-lAu2 (0 ~ r < t);  

r--+ co, u l - +  1; r ---- t ,  u2 = L.](cl),  • = Ou2/Or, 

ui = u/(r, p) = L . c d r ,  t). 

(4.1) 

(4.2) 

(4.3) 

To analyze the problem (1.1)-(1.3) we use the remark made in Sec. 3 that sets up a 
correspondence between the asymptotic expansions of boundary value problems for the transforms 
(4.1)-(4.3) and the originals (1.1)-(1.3). Let us examine the limit case 

Pe--+ oo, p = qPe -1, Iq{ = O ( t ) ,  (4.4) 

which will correspond to the behavior of the original c. for large values of t = O(Pe) because 
1 

of the results in Sec. 3. 

We seek the solutions at the stream cores in the form of a regular expansion in reciprocal 
powers of the Peclet number (i = i, 2, j = O, i) 

(~, (o 0 0), u~ ) (~ (r, O) = . , = = ~ij (4.5) + + . .  

Taking account of (4.4) when we substitute (4.5) into the equation and the boundary con- 
ditions (4.1)-(4.3), and extracting terms with identical powers of the Peclet number, we ob- 
tain for the first terms of the expansion at the stream cores 

(vlV)u~0)=0,  t - + c o ,  u~0)-+l; ( 4 . 6 )  

(vlV) u~l ) = • ) - -  q (u~0) - -  t) ,  r - ~  oo, u~ ) - +  0; ( 4 . 7 )  

(v2V) u (~)2o = O; ( 4 . 8 )  

("r v )  u(e)21 = Au~ d - -  qu~ ) .  (4.9) 

In the outer and inner diffusion boundary layers di, a "stretched" variable Y is intro- 

duced as before, and the solution is sought in the form of the expansion 

= u(~0.  pc - l / 2 .  (d) (d)l (d) (d) . (d) I v  Ul t0 ' " i l  + . . . .  U i o / U n  = 0 0 ) ,  Uij = ~i: ~ ,  ~),  ( 4 . 1 0 )  

Y =  pel/~(i - -  r), ~ = c o s 0 ( i =  t ,  2, ] = 0 , 1 ) .  

S u b s t i t u t i n g  ( 4 . 1 0 )  i n t o  ( 4 . 1 ) - ~ 4 . 3 )  w i t h  ( 4 . 4 )  t a k e n  i n t o  a c c o u n t  and t h e n  e x p a n d i n g  i n  
a s e r i e s  i n  t h e  s m a l l  p a r a m e t e r  Pe - ~ / 2  r e s u l t s  i n  t h e  b o u n d a r y  l a y e r  e q u a t i o n s  and b o u n d a r y  

c o n d i t i o n s  ( t h e  d i f f e r e n t i a l  o p e r a t o r  h ( i )  i s  d e f i n e d  i n  ( 2 . 1 ) ) :  

. (d)~ 041 ~20 C1 CIO 7 

Ou~ d) Ou( d')23 
Y = O ,  n Oy = ~ ,  j = O , l .  

I n  t h e  c o n v e c t i v e  b o u n d a r y  l a y e r  domain  o f  t h e  d i f f u s i o n  wake W(~ ) 
t h e  s o l u t i o n  i s  s o u g h t  i n  t h e  f o r m  o f  t h e  e x p a n s i o n  

A ( O  ..(d) 
"~i0 =0, i:I, 2; (4.11) 

\ Ou(a, ^ (d) Ou(d) ( O~lO i0. ~(1) , (d) I 3 ) ~2 XO 3 ~y (i - -  ~t ~) --~-- - -  2• ~ , 
~ "~n ~ ---2-~ ~ 0Y 2 (4.12) 

A(2) u(d) i ou(d) Du(d) OUtdo ) 2o 3 y ( l  j ~t 2) v 2o 
�9 21 = 2 ~y2 aY 2 7 ~  - - - 2  aY;  ( 4 . 1 3 )  

(4.14) 

within the droplet, 
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( 0  ,~ -1 /~  (1) , (1)1, (1) 0 (l)~ U 2 ~ u 2 o  - } - i ' e  u21 -~- . . . ,  ~ 2 o 1 ~ s l  -~  

( 0  , ( 9  (z ,  ~1), "q = P e  1/~ P, U 2 j  ~ ~2.7 

(4.15) 

whose terms satisfy the following equations 

(1) ~ (1) 
U20 OU20 

(i -- z 2) ~ q- Nz ~ -- 0, (4.16) 

Ou(!) OU (1) ~U (1) a2u(1 ~) 
2 21 21 20 - -  2 20 

( i -  z ) - -~ -~  + n z - ~  - = 2 ~ - ~ - ~  o-~" 

The equations and boundary conditions (4.6)-(4.9), (4.11)-(4.14), (4.16) should be 
supplemented by conditions for the asymptotic merging of the solutions on common boundaries 
[12, 13]: The solutions in the cores of the outer and inner stream e. should be merged with 

1 

the solutions of the outer and inner diffusion boundary layer di; the solution in the convec- 

tive boundary layer domain of the inner diffusion wake W(~ ) should be merged with the solu- 
tion of the boundary layer d2 and with the solution in the stream core within the droplet e2. 
For the main terms in the asymptotic expansions (4.5), (4.10), (4.15), the mentioned merger 
conditions are written in the form 

u~o ) ( r - +  1) = ~lo'(d) ( y - - +  __ oo), u (e)2o (r--+ t) = "~2o(d) ( y  ~ _4_ co), ( 4 . 1 7 )  

u(e) (1) u (d) 1) u (1) ( z - +  t): ~o ( e - ~  o) = ~so ( n - ~  ~),  s0 (~-~ _+ so _+ 

I t  f o l l o w s  f r o m  ( 4 . 6 ) ,  ( 4 . 8 )  t h a t  t h e  z e r o t h  t e r m s  o f  t h e  e x p a n s i o n  i n  t h e  o u t e r  and 
inner flow cores depend only on the stream function. 

~ o  ) = U~o ) ( , c %  ~ = t, 2. ( 4 . 1 8 )  

The a s y m p t o t i c  s o l u t i o n  o f  t h e  p r o b l e m  ( 4 . 1 ) - ( 4 . 3 )  w i l l  be  c o n s t r u c t e d  i n  s e q u e n c e  by  
s t a r t i n g  f r o m  t h e  e x t e r n a t  s t r e a m  c o r e  e~ + d~ § d2 § e~ ~ W ( 1 ) .  

T a k i n g  a c c o u n t  o f  ( 4 . 1 8 ) ,  i t  f o l l o w s  f r o m  t h e  b o u n d a r y  c o n d i t i o n s  a t  i n f i n i t y  ( 4 . 6 ) ,  
( 4 . 7 ) ,  a n d ( 4 . 1 7 )  t h a t  t h e  f i r s t  t e r m s  o f  t h e  e x p a n s i o n  i n  t h e  s t r e a m  c o r e  o u t s i d e  t h e  d r o p l e t  
h a v e  t h e  f o r m  

.u? :  1, u?l) ~-- O. (4.19) 

It is seen by direct substitution that the highest term of the expansion of the outer 
diffusion boundary layer, which is a solution of (4.11) for i = i and satisfies the condition 
for merger with the solution in the stream core (4.17), (4.19), has the form 

u(d) i .  (4.20) 

T a k i n g  a c c o u n t  o f  t h e  e q u a l i t y  c (d~  = 1 (wh ich  i s  a r e s u l t  o f  ( 4 . 2 0 ) ) ,  i t  can  be  s e e n  i n  
an analogous manner that the main term of the inner diffusion boundary layer expansion, which 
is a solution of (4.11) for i = 2 and satisfies the boundary conditions on the droplet sur- 
face (4.14), is determined by the expression 

~(d) 
~o = ] (I). (4.21) 

The concentration distribution in the convective boundary layer domain of the diffusion 
wake within the droplet W! ~) is determined by the solution of (4.16) with the boundary condi- 
tion ]z] § I, u(~ = f(1) (which is a result of the mendition for the merger of the solutions 

(d) u!0*) u2o and (4.17)) and has the form 

u(1) 
2o ---- f ( t ) .  (4.22) 

Because of (4.21) and (4.22), the condition for merging the solutions in the domains d2, 

W (I), and e2 (4.17) yields the boundary conditions for the equation in the stream core within 
the droplet explicitly 

,(~) O, u ( ~ > - / 0 ) .  = s0 -- (4.23) 
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Equation (4.8), whose general solution has the form (4.18), and the boundary condition 
(4.23) turn out to be insufficient for the determination of the concentration field in the 
stream core. To obtain the necessary additional information about the function u~) we use 
the equation for the next term in the expansion (4.9). For convenience in the analysis, we 
introduce a new orthogonal coordinate system ~, ~, ~, connected to the streamlines (the fixed 
curves ~ = const are orthogonal to the streamlines ~(~) = const), which was used in [15]: 

r 4 c o s  4 0 

= t6~(~) __---- 4r ~ ( l  - -  r 2) sin ~ 0, ~1 -= 2r ~ __ t '  

1 (2r2 - -  t)~ r ~ sin ~ 0, 
g ~ = 6 4 r  ~sin ~0E' gnu---- 16r ~cos ~0E' gq0~p= 

E = E(r, 0 ) - -  ( l - - r ~ )  2cos ~ 0 - 6 ( 2 r  ~ -  t)  ~'sin~0, g = g~g gnn g ~  

(0~< ~<~ ~, - c o  < n <  + 0o). 

Equation (4.9) takes the following form in the coordinate system ~, ~, ~ , 

(4.24) 

The procedure used henceforth is analogous to the sequential elimination of secular 
(growing) terms when applying the method of stretched coordinates and the method of many 
scales [12, 13]. Because of the continuity of the solution of the initial problem (1.1)-(1.3) 
along the fixed streamline ~ = const, the equality 

~(~, n = - ~ )  = ~(~, n = +oo),: (4.25) 

should be satisfied, which means that different points (~, -~o) and (~, 4<o) in the new ~, 

coordinate system correspond to the same point (i/r 8) in the old spherical r, 8 coordinate 

system. Integration of (4.24) over ~(-~< ~ <q~o) with (4.25) taken into account (analogous 

relationships for all terms of the expansion of the transform of the solution at the stream 
cores are a result) will result in the following ordinary differential equation 

d [ du~2]--qJ(~)u~=O, ~ = 0 ,  u ~ = / ( l ) ,  ( 4 . 2 6 )  
d~ r(~)  d~ j 

2 lIFT- V iT--F / r (~) = T 

X K  ~ ' Y VI§ V l + ] / ~ / "  

0 
H e r e  E and  K a r e  t h e  c o m p l e t e  e l l i p t i c  i n t e g r a l s  o f  t h e  f i r s t  and  s e c o n d  k i n d ,  r e s p e c t i v e l y .  

The c o e f f i c i e n t s  o f  ( 4 . 2 6 )  h a v e  t h e  f o l l o w i n g  s i n g u l a r i t i e s  ~ § 0 ,  J ( 6 )  = O ( l n  ~ ) ;  ~ + 1 ,  

r ( ~ )  = 0 ( 1  --  ~ ) .  A l o c a l  a n a l y s i s  o f  ( 4 . 2 6 )  shows  t h a t  t h e  f i r s t  d e r i v a t i v e  o f  u ( ~  i s  f i n i t e  

a t  z e r o ,  w h i l e  t h e  s e c o n d  i s  i n f i n i t e  and  h a s  a l o g a r i t h m i c  s i n g u l a r i t y ;  t h e  s e c o n d  s i n g u l a r i t y  
a t  t h e  p o i n t  o f  d e g e n e r a t i o n  ~ = 1 d e t e r m i n e s  two l i n e a r l y  i n d e p e n d e n t  s o l u t i o n s ,  one  o f  w h i c h  
i s  n o t  b o u n d e d  a s  ~ § 1.  T h i s  l a t t e r  means  t h a t  a c o n d i t i o n  o f  b o u n d e d n e s s  o f  t h e  s o l u t i o n  a t  

= 1 s h o u l d  s t i l l  b e  i m p o s e d  f o r  e q u a t i o n  ( 2 . 2 6 )  i n  a d d i t i o n  t o  t h e  b o u n d a r y  c o n d i t i o n  ( 4 . 2 3 ) .  

~(2 (e) = f(1)+ A~ (2) + Expansion of the solution of problem (4.26) as ) + 0 has the form U2o 

o(~ (2)) (where A = A(q) is the transform of the mean concentration at the stream core). Hence, 

taking account of (4.20) and the second equality of (4.19), the boundary conditions on the drop- 

let surface (4.14) (j = i) and at infinity (corresponding to the asymptotic expansion in the 
domains e~, d~ and e2, d2) have the following form for the second terms of the expansions in 
the inner and outer diffusion boundary layer domains 
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Y = O, u (d) ,, (d) 
21 = u 7 

, (d)  ~ n .  

(~u(d) Gou(d)( 11 31 oof[ ) 
x-b-f-=-Xf- ~ '=~ ~=~ C 

u(d) .--+- i 
Y-->- + oo, 31 7 A Y  (1 - -  F3). 

(4.27) 

Equations (4.12) and (4.13), whose right sides vanish because of (4.20) and (4.21), deter- 
mine, with the boundary conditions (4.27), the second terms of the expansions in the outer and 
inner boundary layers of the droplets. 

It should be noted that the highest term of the expansion in the stream core which is 
determined by solving the problem (4.26) is uniformly suitable (in high Peclet numbers) in 
the whole flow domain within the droplet because of (4.21) and (4.22). Consequently, in 

place of c~ ) we shall simply write c2. 
F % 

The reverse transition from the transform to the original results in the following non- 
stationary equation for the concentration distribution within the drop (t' is the dimensionless 
time) 

j(~)8~__~ = F ( ~ ) - ~ ,  T = P e " l t ~ - - a - = D z t  ', ( 4 . 2 8 )  

�9 = 0 ,  c2=0; ~=0,  c3=1(t); ~= t ,  c2<0o. 

For f(1) = 1 Eq. 
examined in [15]. 
(4.28) 

(4.28) agrees exactly with the equation for the purely internal problem 
Hence, we have for the mean concentration corresponding to the solution 

<c3> = ] (i) 1 -  --f- ak exp  ( - -  ~,n'~) , 
h=l 

a l  = 0,4554, aa = 0.0654, 'aa 0 .0542,  a4 = 0 .04 t2 ,  a5 ---- 0.0038, 

Xx = 26.844, X3 = t 3 7 . 9 t ,  Xs = 3 t5 . 66 ,  ~,  ----724.981, X5 = i205,2 .  

(4.29) 

Here the coefficients a and ~ are presented from data in [8]; for n = i, 
n n 

these coefficients close to those written down were calculated in [15]. 

2 values of 

5. DISCUSSION OF THE RESULTS. SOME GENERALIZATIONS 

Let us note the following circumstances: 

i) The solution (2.4)-(2.6) which was obtained in [3, 4, 6] in the linear case f(cz) = 

acl is valid only in the initial time interval 0~ t < 0(in Pe) (which also determines the 
domain of applicability of the results [7]); 

2) Equation (4.28) corresponding to the nonstationary mass transfer of the drop and the 
continuous medium for commensurate phase resistances (1.1)-(1.3) is valid only in the con- 
cluding stage of process development for t ~0(Pe) and agrees in form (for f(1) = i) with the 
Kronig and Brink equation [15] obtained for the purely internal problem; 

3) Equation (4.28) is uniformly suitable (in high Peclet number) in the whole domain 
within the droplet up to its boundary (including the diffusion wake domain also). 

The validity of (4.28) for t~O(Pe) means physically that for sufficiently large times 
(t ~0(Pe)) a stationary regime is actually set up outside the droplet, that corresponds to a 
homogeneous concentration distribution in the stream while a substantially nonstationary pro- 
cess proceeds inside the droplet when a constant concentration is maintained on its surface, 
determined by the phase equilibrium condition (i.I') with a stationary homogeneous concentra- 
tion field outside the droplet. It moreover follows from (4.22) that the concentration on 
the stream axis within the droplet is already equal, for t~0(Pe) to the concentration on 
its surface (because of the multiple circulation of the substance dissolved in the fluid over 
the closed streamlines). 

It should be noted that although the equation and boundary conditions (1.1)-(1.3) were 
formulated for the concentration problem, all the results obtained are easily carried over 
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to the appropriate thermal problem cz E T~, c~ ~ T= (Tx and T~ are thedimensionless tempera- 
ture outside and inside the droplet), which differs from (i~i)-(1.3) only by the boundary 
conditions (1.3), which have the following form in this case 

r = :I~ T~ = T~,; (L~/L~) O T J 0 r  = o r J O r  ( T ,  ~- T ~ o -  T~o), 

where kz and ~2 are heat conduction coefficients of the fluid outside and inside the droplet. 
In particular, (4.29) remains valid for <c2> ~ <T2> and f(1) = i for the mean temperature 
distribution within the drop for t~0(Pe). 

Let us now investigate the behavior of the solution of problem (1.1)-(1.3) as a function 
of changes in the ratio between the viscosities of the droplet and the surrounding fluid ~. 
An analysis made corresponded to the case ~ = O(1), and consequently, the final results were 
independent of the parameter B. In the limit case B >> 1 there is practically no flow within 
the droplet (~ = ~ corresponds to a solid particle). It can be shown that for Pe = aU DT ~ >> 

! (let us note that Pe differs by the factor x(B + i) from the Pe used in (1.1)-(1.3)) and 

T = a-2D2t'~ O(1) the concentration (temperature) distribution in the stream outside the 

particle is homogeneous (in the principal direction, naturally): cx = 1 and the concentration 
distribution within the particle is determined by the usual nonstationary heat conduction 
equation (which corresponds to v2 = 0 in (i.i) for i = 2): 

~c2 
~--~-=Ac~, x=0~ c~=0,: r = t , , c ~ = f ( t ) ,  (5.1) 

The solution of the problem (5.1) results in the following expression for the mean con- 
centration inside the droplet [8]: 

exp (-- <c~> = / (~) I - -~ ~k~) ( 5 , 2 )  

Comparing (4.29) and (5.2) shows that the order of the characteristic times of nonsta- 
tionary mass and heat transfer process build-up is identical for droplets of moderate (B = 
0(i)) and ultimately large (B >> i) viscosity and is determined by the quantity ~a2D~ I. How- 
ever, the damping decrements of the solution as �9 § ~ (substantially) differ by 2.72 times~ 
This latter means that the presence of fluid circulation within the droplets for B = 0(i) 
intensifies the convective mass and heat transfer process as compared to a "solid" drop (B = 
~)~ where there is no substance transfer because of circulation. It should also be noted 
that even a significant increase in the external stream velocity U (Pe § ~) influences the 
degree of substance extraction from the droplet weakly, which has an upper bound as Pe § 
and is proportional to the damping decrement of the mean concentration (4.29). Hence, the 
relative increment in the degree of extraction because of an increase in the Peciet number 
tends to zero as Pe § ~. 

It should be noted that the results of the asymptotic analysis performed are easily 
extended to the general case of convective mass and heat transfer of droplets of any shape 
around which there is an arbitrary two-dimensional incompressible(ideal, viscous~ etc.) fluid for 
commensurate phase resistances. In particular, for T=Po-1~=a-~D2t'~O(l~ the concemtration 
distribution outside the droplet is practically homogeneous and is determined by an appro- 
priate value at infinity, while a nonstationary process~ described by the following boundary 
value problem (the condition of boundedness of the solution inside the droplet is omitted), 
proceeds inside the droplet 

Oc~ 0 Oct. 
J (~ )~=~-~r ( , )~ ,  ~=0, e~=o; ~--~, ~=/(l),  (5.3) 

g~ 

Here ~, X, ~ are an orthogonal system connected with the stream function ~, = ~(~) 

governing the flow inside the droplet; the curvilinear coordinate ~ orthogonal to X is found 

by solving the equation (V~'Vx) = 0 (in the plane case g~, = 1 should be used~ and in the 
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axisymmetric case g~ = r~sin2@ ). In those cases when there are several independent domains 

~j(j = i, ..., n) with perfectly closed streamlines within the droplet which are bounded by 

singular (critical) streamlines or surfaces (which are closed on the droplet surface), equa- 
tion (5.3) should be written down and solved independently in all the domains ~. by taking 

J 
into account that for T~O(1) the very same concentration value of f(1), (an example of 
such a flow is presented in [7] for j = 4) is "taken off" the drop surface onto the singular 
streamlines. 
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